Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 588: 216800, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38492768

RESUMEN

Drug development in oncology is highly challenging, with less than 5% success rate in clinical trials. This alarming figure points out the need to study in more details the multiple biological effects of drugs in specific contexts. Indeed, the comprehensive assessment of drug poly-pharmacology can provide insights into their therapeutic and adverse effects, to optimize their utilization and maximize the success rate of clinical trials. Recent technological advances have made possible in-depth investigation of drug poly-pharmacology. This review first highlights high-throughput methodologies that have been used to unveil new mechanisms of action of existing drugs. Then, we discuss how emerging chemo-proteomics strategies allow effectively dissecting the poly-pharmacology of drugs in an unsupervised manner.


Asunto(s)
Neoplasias , Polifarmacia , Proteómica , Humanos , Neoplasias/tratamiento farmacológico
2.
Cell Rep Med ; 4(12): 101339, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118405

RESUMEN

Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.


Asunto(s)
Antineoplásicos , Rabdomiosarcoma , Adulto , Humanos , Niño , Recurrencia Local de Neoplasia/tratamiento farmacológico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Organoides/patología , Muerte Celular
3.
EBioMedicine ; 95: 104752, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37572644

RESUMEN

BACKGROUND: Pharmacological synergisms are an attractive anticancer strategy. However, with more than 5000 approved-drugs and compounds in clinical development, identifying synergistic treatments represents a major challenge. METHODS: High-throughput screening was combined with target deconvolution and functional genomics to reveal targetable vulnerabilities in glioblastoma. The role of the top gene hit was investigated by RNA interference, transcriptomics and immunohistochemistry in glioblastoma patient samples. Drug combination screen using a custom-made library of 88 compounds in association with six inhibitors of the identified glioblastoma vulnerabilities was performed to unveil pharmacological synergisms. Glioblastoma 3D spheroid, organotypic ex vivo and syngeneic orthotopic mouse models were used to validate synergistic treatments. FINDINGS: Nine targetable vulnerabilities were identified in glioblastoma and the top gene hit RRM1 was validated as an independent prognostic factor. The associations of CHK1/MEK and AURKA/BET inhibitors were identified as the most potent amongst 528 tested pairwise drug combinations and their efficacy was validated in 3D spheroid models. The high synergism of AURKA/BET dual inhibition was confirmed in ex vivo and in vivo glioblastoma models, without detectable toxicity. INTERPRETATION: Our work provides strong pre-clinical evidence of the efficacy of AURKA/BET inhibitor combination in glioblastoma and opens new therapeutic avenues for this unmet medical need. Besides, we established the proof-of-concept of a stepwise approach aiming at exploiting drug poly-pharmacology to unveil druggable cancer vulnerabilities and to fast-track the identification of synergistic combinations against refractory cancers. FUNDING: This study was funded by institutional grants and charities.


Asunto(s)
Antineoplásicos , Glioblastoma , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Aurora Quinasa A , Sinergismo Farmacológico , Línea Celular Tumoral , Antineoplásicos/farmacología , Combinación de Medicamentos
4.
Cancer Res ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145169

RESUMEN

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA-mutations showed increased sensitivity to ONC201, while those harboring TP53-mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992.

5.
Cancers (Basel) ; 13(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066944

RESUMEN

Despite recent advances in deciphering cancer drug resistance mechanisms, relapse is a widely observed phenomenon in advanced cancers, mainly due to intratumor clonal heterogeneity. How tumor clones progress and impact each other remains elusive. In this study, we developed 2D and 3D non-small cell lung cancer co-culture systems and defined a phenomenological mathematical model to better understand clone dynamics. Our results demonstrated that the drug-sensitive clones inhibit the proliferation of the drug-resistant ones under untreated conditions. Model predictions and their experimental in vitro and in vivo validations indicated that a metronomic schedule leads to a better regulation of tumor cell heterogeneity over time than a maximum-tolerated dose schedule, while achieving control of tumor progression. We finally showed that drug-sensitive and -resistant clones exhibited different metabolic statuses that could be involved in controlling the intratumor heterogeneity dynamics. Our data suggested that the glycolytic activity of drug-sensitive clones could play a major role in inhibiting the drug-resistant clone proliferation. Altogether, these computational and experimental approaches provide foundations for using metronomic therapy to control drug-sensitive and -resistant clone balance and highlight the potential of targeting cell metabolism to manage intratumor heterogeneity.

6.
Mol Oncol ; 14(12): 3083-3099, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33021050

RESUMEN

The concept of polypharmacology involves the interaction of drug molecules with multiple molecular targets. It provides a unique opportunity for the repurposing of already-approved drugs to target key factors involved in human diseases. Herein, we used an in silico target prediction algorithm to investigate the mechanism of action of mebendazole, an antihelminthic drug, currently repurposed in the treatment of brain tumors. First, we confirmed that mebendazole decreased the viability of glioblastoma cells in vitro (IC50 values ranging from 288 nm to 2.1 µm). Our in silico approach unveiled 21 putative molecular targets for mebendazole, including 12 proteins significantly upregulated at the gene level in glioblastoma as compared to normal brain tissue (fold change > 1.5; P < 0.0001). Validation experiments were performed on three major kinases involved in cancer biology: ABL1, MAPK1/ERK2, and MAPK14/p38α. Mebendazole could inhibit the activity of these kinases in vitro in a dose-dependent manner, with a high potency against MAPK14 (IC50  = 104 ± 46 nm). Its direct binding to MAPK14 was further validated in vitro, and inhibition of MAPK14 kinase activity was confirmed in live glioblastoma cells. Consistent with biophysical data, molecular modeling suggested that mebendazole was able to bind to the catalytic site of MAPK14. Finally, gene silencing demonstrated that MAPK14 is involved in glioblastoma tumor spheroid growth and response to mebendazole treatment. This study thus highlighted the role of MAPK14 in the anticancer mechanism of action of mebendazole and provides further rationale for the pharmacological targeting of MAPK14 in brain tumors. It also opens new avenues for the development of novel MAPK14/p38α inhibitors to treat human diseases.


Asunto(s)
Simulación por Computador , Mebendazol/uso terapéutico , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Concentración 50 Inhibidora , Mebendazol/química , Mebendazol/farmacología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Modelos Moleculares , Inhibidores de Proteínas Quinasas/farmacología
7.
Theranostics ; 10(14): 6411-6429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32483461

RESUMEN

Targeting glutamine metabolism has emerged as a potential therapeutic strategy for Myc overexpressing cancer cells. Myc proteins contribute to an aggressive neuroblastoma phenotype. Radiotherapy is one of the treatment modalities for high-risk neuroblastoma patients. Herein, we investigated the effect of glutamine deprivation in combination with irradiation in neuroblastoma cells representative of high-risk disease and studied the role of Myc member interplay in regulating neuroblastoma cell radioresistance. Methods: Cell proliferation and viability assays were used to establish the effect of glutamine deprivation in neuroblastoma cells expressing c-Myc or MycN. Gene silencing and overexpression were used to modulate the expression of Myc genes to determine their role in neuroblastoma radioresistance. qPCR and western blot investigated interplay between expression of Myc members. The impact of glutamine deprivation on cell response following irradiation was explored using a radiobiological 3D colony assay. DNA repair gene pathways as well as CSC-related genes were studied by qPCR array. Reactive Oxygen Species (ROS) and glutathione (GSH) levels were detected by fluorescence and luminescence probes respectively. Cancer-stem cell (CSC) properties were investigated by sphere-forming assay and flow cytometry to quantify CSC markers. Expression of DNA repair genes and CSC-related genes was analysed by mining publicly available patient datasets. Results: Our results showed that glutamine deprivation decreased neuroblastoma cell proliferation and viability and modulated Myc member expression. We then demonstrated for the first time that combined glutamine deprivation with irradiation led to a selective radioresistance of MYCN-amplified neuroblastoma cells. By exploring the underlying mechanism of neuroblastoma radioresistance properties, our results highlight interplay between c-Myc and MycN expression suggesting compensatory mechanisms in Myc proteins leading to radioresistance in MYCN-amplified cells. This result was associated with the ability of MYCN-amplified cells to dysregulate the DNA repair gene pathway, maintain GSH and ROS levels and to increase the CSC-like population and properties. Conversely, glutamine deprivation led to radiosensitization in non-MYCN amplified cell lines through a disruption of the cell redox balance and a trend to decrease in the CSC-like populations. Mining publicly available gene expression dataset obtained from pediatric neuroblastoma patients, we identified a correlation pattern between Myc members and CSC-related genes as well as a specific group of DNA repair gene pathways. Conclusions: This study demonstrated that MycN and c-Myc tightly cooperate in regulation of the neuroblastoma CSC phenotypes and radioresistance upon glutamine deprivation. Pharmacologically, strategies targeting glutamine metabolism may prove beneficial in Myc-driven tumors. Consideration of MycN/c-Myc status in selecting neuroblastoma patients for glutamine metabolism treatment will be important to avoid potential radioresistance.


Asunto(s)
Glutamina/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Genes myc , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/terapia , Radioterapia/métodos
8.
ACS Pharmacol Transl Sci ; 3(1): 148-160, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32259094

RESUMEN

MYCN-amplified neuroblastoma is one of the deadliest forms of childhood cancer and remains a significant clinical challenge. Direct pharmacological inhibition of MYCN is not currently achievable. One strategy could be to target the AKT/GSK3ß pathway, which directly regulates the stability of the MYCN protein. Numerous potent and isoform-specific small-molecule AKT inhibitors have been developed. However, the selection of the right drug combinations in the relevant indication will have a significant impact on AKT inhibitor clinical success. To maximally exploit the potential of AKT inhibitors, a better understanding of AKT isoform functions in cancer is crucial. Here using RNAi to downregulate specific AKT isoforms, we demonstrated that loss of total AKT activity rather than isoform-specific expression was necessary to decrease MYCN expression and cause a significant decrease in neuroblastoma cell proliferation. Consistent with these observations, isoform-specific pharmacological inhibition of AKT was substantially less effective than pan-AKT inhibition in combination with cytotoxic drugs in MYCN-amplified neuroblastoma. The allosteric pan-AKT inhibitor perifosine had promising in vitro and in vivo activity in combination with conventional cytotoxic drugs in MYCN-amplified neuroblastoma cells. Our results demonstrated that perifosine drug combination was able to induce apoptosis and downregulate ABC transporter expression. Collectively, this study shows that selecting pan-AKT inhibitors rather than isoform-specific drugs to synergize with first-line chemotherapy treatment should be considered for clinical trials for aggressive neuroblastoma and, potentially, other MYCN -driven cancers.

9.
Br J Cancer ; 122(3): 434-444, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31806880

RESUMEN

BACKGROUND: Stathmin mediates cell migration and invasion in vitro, and metastasis in vivo. To investigate stathmin's role on the metastatic process, we performed integrated mRNA-miRNA expression analysis to identify pathways regulated by stathmin. METHODS: MiRNA and gene arrays followed by miRNA-target-gene integration were performed on stathmin-depleted neuroblastoma cells (CtrlshRNA vs. Stmn Seq2shRNA). The expression of the predicted target PTPN14 was evaluated by RT-qPCR, western blot and immunohistochemistry. Gene-silencing technology was used to assess the role of PTPN14 on proliferation, migration, invasion and signalling pathway. RESULTS: Stathmin levels modulated the expression of genes and miRNA in neuroblastoma cells, leading to a deregulation of migration and invasion pathways. Consistent with gene array data, PTPN14 mRNA and protein expression were downregulated in stathmin- depleted neuroblastoma cells and xenografts. In two independent neuroblastoma cells, suppression of PTPN14 expression led to an increase in cell migration and invasion. PTPN14 and stathmin expression did not act in a feedback regulatory loop in PTPN14- depleted cells, suggesting a complex interplay of signalling pathways. The effect of PTPN14 on YAP pathway activation was cell-type dependent. CONCLUSIONS: Our findings demonstrate that stathmin levels can regulate PTPN14 expression, which can modulate neuroblastoma cell migration and invasion.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neuroblastoma/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Estatmina/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Ratones , Ratones SCID , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Trasplante de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Estatmina/metabolismo
10.
Pharmaceutics ; 11(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583524

RESUMEN

With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin⁻human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44⁻0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.

11.
Nat Nanotechnol ; 13(11): 1066-1071, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150634

RESUMEN

There is intense interest in quantifying the levels of microRNA because of its importance as a blood-borne biomarker. The challenge has been to develop methods that can monitor microRNA expression both over broad concentration ranges and in ultralow amounts directly in a patient's blood. Here, we show that, through electric-field-induced reconfiguration of a network of gold-coated magnetic nanoparticles modified by probe DNA (DNA-Au@MNPs), it is possible to create a highly sensitive sensor for direct analysis of nucleic acids in samples as complex as whole blood. The sensor is the first to be able to detect concentrations of microRNA from 10 aM to 1 nM in unprocessed blood samples. It can distinguish small variations in microRNA concentrations in blood samples of mice with growing tumours. The ultrasensitive and direct detection of microRNA using an electrically reconfigurable DNA-Au@MNPs network makes the reported device a promising tool for cancer diagnostics.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Sondas de ADN/química , Oro/química , Nanopartículas de Magnetita/química , MicroARNs/sangre , Neoplasias Experimentales , ARN Neoplásico/sangre , Células A549 , Animales , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/sangre , Neoplasias Experimentales/diagnóstico , Hibridación de Ácido Nucleico/métodos
12.
Eur J Pharm Biopharm ; 122: 176-185, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29129733

RESUMEN

Hybrid nanocarrier consisting in nanographene oxide coated by a dextran-catechin conjugate was proposed in the efforts to find more efficient Neuroblastoma treatment with Doxorubicin chemotherapy. The dextran-catechin conjugate was prepared by immobilized laccase catalysis and its peculiar reducing ability exploited for the synthesis of the hybrid carrier. Raman spectra and DSC thermograms were recorded to check the physicochemical properties of the nanohybrid, while DLS measurements, SEM, TEM, and AFM microscopy allowed the determination of its morphological and dimensional features. A pH dependent Doxorubicin release was observed, with 30 and 75% doxorubicin released at pH 7.4 and 5.0, respectively. Viability assays on parental BE(2)C and resistant BE(2)C/ADR cell lines proved that the high anticancer activity of dextran-catechin conjugate (IC50 19.9 ±â€¯0.6 and 18.4 ±â€¯0.7 µg mL-1) was retained upon formation of the nanohybrids (IC50 24.8 ±â€¯0.7 and 22.9 ±â€¯1 µg mL-1). Combination therapy showed a synergistic activity between doxorubicin and either bioconjugate or nanocarrier on BE(2)C. More interestingly, on BE(2)C/ADR we recorded both the reversion of doxorubicin resistance mechanism as a consequence of decreased P-gp expression (Western Blot analysis) and a synergistic effect on cell viability, confirming the proposed nanohybrid as a very promising starting point for further research in neuroblastoma treatment.


Asunto(s)
Catequina/química , Dextranos/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Resistencia a Antineoplásicos/efectos de los fármacos , Nanopartículas/química , Neuroblastoma/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Sinergismo Farmacológico , Humanos
13.
Sci Rep ; 7: 45136, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28332584

RESUMEN

Metabolic reprogramming is a hallmark of cancer development, mediated by genetic and epigenetic alterations that may be pharmacologically targeted. Among oncogenes, the kinase Akt is commonly overexpressed in tumors and favors glycolysis, providing a rationale for using Akt inhibitors. Here, we addressed the question of whether and how inhibiting Akt activity could improve therapy of non-small cell lung cancer (NSCLC) that represents more than 80% of all lung cancer cases. First, we demonstrated that Akt inhibitors interacted synergistically with Microtubule-Targeting Agents (MTAs) and specifically in cancer cell lines, including those resistant to chemotherapy agents and anti-EGFR targeted therapies. In vivo, we further revealed that the chronic administration of low-doses of paclitaxel - i.e. metronomic scheduling - and the anti-Akt perifosine was the most efficient and the best tolerated treatment against NSCLC. Regarding drug mechanism of action, perifosine potentiated the pro-apoptotic effects of paclitaxel, independently of cell cycle arrest, and combining paclitaxel/perifosine resulted in a sustained suppression of glycolytic and mitochondrial metabolism. This study points out that targeting cancer cell bioenergetics may represent a novel therapeutic avenue in NSCLC, and provides a strong foundation for future clinical trials of metronomic MTAs combined with Akt inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Metabolismo Energético/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Técnicas de Cultivo de Célula , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glucólisis , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ratones , Mitocondrias/metabolismo , Paclitaxel/farmacología , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Oncotarget ; 5(10): 3408-23, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24930764

RESUMEN

Microtubule-targeting agents (MTAs) are largely administered in adults and children cancers. Better deciphering their mechanism of action is of prime importance to develop more convenient therapy strategies. Here, we addressed the question of how reactive oxygen species (ROS) generation by mitochondria can be necessary for MTA efficacy. We showed for the first time that EB1 associates with microtubules in a phosphorylation-dependent manner, under control of ROS. By using phospho-defective mutants, we further characterized the Serine 155 residue as critical for EB1 accumulation at microtubule plus-ends, and both cancer cell migration and proliferation. Phosphorylation of EB1 on the Threonine 166 residue triggered opposite effects, and was identified as a requisite molecular switch in MTA activities. We then showed that GSK3ß activation was responsible for MTA-triggered EB1 phosphorylation, resulting from ROS-mediated inhibition of upstream Akt. We thus disclosed here a novel pathway by which generation of mitochondrial ROS modulates microtubule dynamics through phosphorylation of EB1, improving our fundamental knowledge about this oncogenic protein, and pointing out the need to re-examine the current dogma of microtubule targeting by MTAs. The present work also provides a strong mechanistic rational to the promising therapeutic strategies that currently combine MTAs with anti-Akt targeted therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Western Blotting , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Técnica del Anticuerpo Fluorescente Indirecta , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Inmunoprecipitación , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Transfección , Moduladores de Tubulina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA